
?

Advantages of Brahms for Specifying and Implementing a Multiagent
Human-Robotic Exploration System

William J. Clancey’, Maarten Sierhuis, Charis Kaskiris, and Ron van Hoof

NASAiAmes Research Center
Computational Science Division, MS 269-3

Moffett Field, California 943055
bclancey @mail.arc.nasa.gov

Abstract
We have developed a model-based, distributed architecture
that integrates diverse components in a system designed for
lunar and planetary surface operations: an astronaut’s space
suit, cameras, all-terrain vehicles, robotic assistant, crew in a
local habitat, and mission support team. Software processes
c‘agents”) implemented in the Brahms language, run on
multiple, mobile platforms. These “mobile agents” interpret
and transform available data to help people and robotic
systems coordinate their actions to make operations more
safe and efficient. The Brahms-based mobile agent
architecture (MAA) uses a novel combination of agent types
so the software agents may understand and facilitate
communications between people and between system
components. A state-of-the-art spoken dialogue interface is
integrated with Brahms models, supporting a speech-driven
field observation record and rover command system. An
important aspect of the methodology involves first
simulating the entire system in Brahms, then configuring the
agents into a runtime system Thus, Brahms provides a
language, engine, and system builder’s toolkit for specifying
and implementing multiagent systems.

Background
Multiagent systems were a natural outgrowth of
knowledge-based systems of the 19?Os, the idea of
multiple, distributed sources of information and model-
based processing (“distributed AI”) developed in the
1980s, and the affordable, networked computing platforms
of the 1990s. However, just as it has become practical to
construct interacting systems of hardware and software,
such a s robotic assistants, GPS devices, biosensors,
cameras, and the like, system builders need tools to help
specify how these components are to interact in complex
situations, means to test the designed processes, and an
implementation architecture that is robust, modular, and
amenable to runtime modifications (e.g., allowing
components to leave or enter the system). We need a
principled methodology for building multiagent systems
(Alonso 2002).

This paper describes how the Brahms simulation system
(Clancey et al. 1998; Sierhuis 2001) has been adapted to
provide both a tool for specifying multiagent systems and

_ _ ~ ~ - ~~
~-

an implementation architecture for runtime agent
interactions on mobile platforms. (We call these “mobile
agents,” to be contrasted with the more dominant meaning
of agents migrating between hosts [Vulkan 20021). We
begin with a description of the work scenario, describe how
Brahms is used to model and control system interactions,
and then describe two field tests in which the system is
gradually developed to fit the target. Finally, we conclude
with a summary of advantages and limits of the Brahms
architecture for multiagent applications.

This project is a collaboration across NASA centers and
other organizations; all of these people might have been
listed as co-authors of this paper:

Brahms Project Group (NASA-Ames: W.J. Clancey,
Principal Investigator; M. Sierhuis, Project
Manager; R. van Hoof, lead programmer; C.
Kaskiris, modeler)
RIALIST Voice Commanding Group (RIACS: John
Dowding, Jim Hieronymus)
MEX Vehicle & Wireless Communications Group
(Ames: Rick Alena, John Ossenfort, Charles Lee)
EVA Robotic Assistant Group (NASA-JSC: David
Kortenkamp, Kim Shillcutt, Rob Hirsh, Jeff
Graham, Rob Burridge)
Space Suit Biovest (Stanford: Sekou Crawford, in
collaboration with Joseph Kosmo, JSC).

Scenario
Our application involves exploration of Mars, in which a
crew of six people are living in a habitat for many months.
Onelong-tern-objective is to automate the rolesf C 4 p h m
in Apollo, in which a person on Earth (in Houston)
monitored and managed the navigation, schedule, and data
collection during lunar traverses (Clancey, in press).
Because of the communication time delay this function
cannot be performed from Earth during Mars exploration,
and other crew members will often be too busy with
maintenance, scientific analysis, or reporting to attend to
every second of a four to seven hour Extra-Vehicular
Activity (EVA). In the initial scenario implemented in
2002 (Figure l), a EVA crew member drives an ATV,

Also Institute for Human and Machine Cognition, UWF, Pensacola, FL.

while the EVA Robotic Assistant (ERA; Burridge &
Graham 2001; Shillcutt et a!. 2002) fn!!ews a!eng or is
directed to carry out certain activities. Brahms software,
represented by the ellipses, is running on board the ERA
and the ATV. A wireless data network (MEWKaoS) links
all components (biosensors, ERA, and Brahms running on
crew backpacks, the ERA, ATVs, and in the hab). Through
voice commanding (Dialog system), the crew member may
control the ERA, name places, and log science data.
Brahms agents carry out the commands.

Brahms Architecture
Brahms is a multiagent system, developed for over a
decade as a way to model and simulate people within a
social and physical world. Agents inherit beliefs and
activities from groups (representing capabilities, roles,
affiliations, work areas, etc.). A subsumption architecture
provides flexible perceptual scoping, redirection of
attention, and resumption of interrupted activities (Clancey
2002, compares activity and task modeling).

Each Brahms system in the MAA includes three kinds of
agents:
1. Personal Agent: Represents the interests and activities

of corresponding people and systems at some location.
For example, the Brahms system running on the ERA
includes an agent representing the ERA’S beliefs (world
view) and activities.

2. Communication Agent: A Java-based agent that
interfaces between a Brahms system and other hardware
or software components. For example, the Dialog Agent
interfaces with the speech commanding system provided
by the RIALIST group.

3. Proxy Agent: Represents agents and objects residing in
other Brahms systems (e.g., ATV Brahms includes an
ERA proxy agent). Usually redirects communications,
but may stand in (e.g., when a mobile agent is out of
communication range or unable to respond immediately
because of the time delay).
The Brahms models and physical devices are integrated

through OAA messages (Martin et al. 1999), KAoS
(Bradshaw et al. 1997), and CORBA: An agent in one
Brahms model communicates with its proxy agent
representation in another model through the KAoS
middleware layer. Communication agents serve as
interfaces between Brahms and external machines (e.g., the
ERA) using CORBA objects.

The total hardware-software system shown in Figure 1 is
first simulated in a single Brahms model, with the different
agents and devices modeled in different locations and
carrying out certain (perhaps scheduled) activities,
according to the scenario(s) being tested. In addition to the
components shown in the ellipses, the people and external
systems (e.g., ERA) are also simulated. This simulation,
which serves a specification for the structure of the final
runtime system, therefore includes:

Simulated People and Systems (e.g., crew, ATV,
Dialog system)

~~ ~~-~ ~-

o

Figure 0: Brahms MAA 2002

o Software Agents (which will become runtime
agents)

Persopal Agents of people (e.g., crew agent) and
systems (e.g., ERA Agent in ERA Brahms)
Communication agents (e.g., Dialog CA)
Proxy agents (e.g., ERA agent in ATV Brahms)

For example, the simulated protocol includes voice
_commands_hy_asimulated crew _rnernber*$Jocxss&by -a
personal agent, passed to the simulated Dialog CA, which
passes the utterance to the simulated Dialog system. In the
implemented runtime system, these components are
replaced by actual people and systems (the crew member,
the Dialog CA written in Java, and the Dialog system). The
personal agents in the simulation remain unchanged in the
runtime system.

First Integration Field Test: April-May 2002
The first systems integration field test was completed at
NASNAmes in April 2002. A “level 0” scenario integrated

the Dialog system and a distributed Brahms model running
on the MEX ATV and a simulated ERA, using the MEX
wireless network. The first field test occurred at JSC at the
end of May, including the ERA control software running
onboard the actual ERA.

The level 0 scenario demonstrates remote commanding
of the ERA by the EVA astronaut, using human speech.
The command to the ERA involves taking a still-picture of
the astronaut (“ERA take a picture of me”). The Dialog
system parses the human voice input and communicates the
derived command to the astronaut’s personal Brahms
agent. The astronaut’s personal agent derives the correct
robot command (including object references) and
communicates it to the ERA’s personal agent running
onboard the ERA (over the MEX wireless network), which
in turn communicates with the ERA using a CORBA
interface. The ERA executes the command and stores the
image. The ERA’s personal agent composes and stores the
context of the picture in the form of a picture meta-data
object and informs the EVA astronaut that the image has
been taken, using the Dialog system.

Besides testing the Dialog/Brahms/MEX interface,
another objective of the field test was to apply and test the
“simulation to implementation” methodology. This Use-
Case method (Jacobson 1994) uses a Brahms simulation
model as an agent- and object-based computational
functional design of the overall software and hardware
system. The runtime system replaces the simulated people
and systems by their corresponding actuzl entities. This
approach allows us to test a complete MA.4 system. This is
especially valuable for simulating those elements or
capabilities that are not still being implemented or only
proposed (e.g. new voice commands for controlling the
robot).

Second Integration Field Test: Joseph City &
Meteor Crater, September 2002

The second field test was held Sept. 3-13, 2002 in Arizona.
The goal was to verify the MAA design, implementation,
and integration with additional devices in a more authentic
field setting. The tests included people wearing an
advanced Mark 111 spacesuit working alongside the ERA
(both from JSC), plus a biovest from Stanford University’s
National Biocomputation Center with _physiological
sensors, including EKG and respiration, worn inside the
spacesuit and transmitted wirelessly to a Personal Data
Assistant (iPaq PDA). The speech dialogue system and
Brahms were again hosted on MEX, which provided
computing and wireless communications on a rugged ATV,
proven capable of remote field deployment from previous
tests in the High Canadian Arctic.

A variety of functions, available to the astronaut through
the integration of physical systems and Brahms agents,
were tested using several pre-scripted scenarios involving
spoken dialogue:

1.

2.

3.

4.

5 .

6.

7.

Start and stop gathering and storing biophysical data
wirelessly during an EVA. This was tested with and
without wearing the Mark 111 spacesuit.
Start and stop tracking the astronaut’s and ERA’s
GPS location data, for recording EVA paths.
Providing real-time location information through
spoken dialog (“Where am I?”).
Define places (geographical location objects) in
real-time, associating given location names with
GPS coordinates for recording visited places during
the EVA.
Define sample bag objects in real-time, recording
when and where samples have been collected.
Record voice annotations associated with a time,
place, and optionally a sample bag object.
Have ERA use its cameras to take photos of the
tracked astronaut.

The results of the field test fall into three areas of
concern:
1.

2.

3.

Agent architecture: the system must be better
designed to cope with a brittle wireless network,
with methods for handling lack of communication,
as well as means for people to monitor agent status.
The relation between Brahms and the biovest
requires separating out low-level sensor processing
from interpretation and data archiving (otherwise
the Brahms history system can be overloaded with
details).
Hardware: Requires sensors to indicate remaining
power and provide warnings; means to handle
bandwidth interference and microphone sensitivity;
better discipline for configuring connectors, so what
is tested is used in the field; augmented ERA
capabilities, e.g., to hold a sample bag.
Logistics: The large number of teams coordinate
well, but the next round of tests should eliminate the
spacesuit in order to focus on MAA infrastructure;
in-situ testing must be better staged (operations
were too often driven by including the suited
subject, which required special microphones and
biovest connections that complicated the simpler
connectivity tests that had not yet been
accomplished); a more permanent field shelter is
recluired during several weeks of outdoor work. -

Somewhat unexpectedly, the most important result was that
wsinga multiagent simula_tbn with-s-cenario-based- form-a1
specification greatly facilitated and very likely significantly
accelerated cross-institution collaboration. That is, Brahms
was shown to be a useful collaborative engineering tool for
integrating sensors, automation, procedures, and
communication.

Advantages of Brahms Architecture
Developing multiagent systems requires “a systematic
means of analyzing the problem, of working how it can be
best structured.. .and then determining how individual
agents can be structured” (Jennings et al. 1998, p. 3 1). The

’.

field tests to date demonstrate that Brahms language and
the semantics we attribute to i% provide 2 powerful
framework for specifying and implementing a multiagent
system. The language formalizes ontological distinctions
that lead the system builder to ground agent behaviors in
located interactions of explicit communication (including
voice and written documents), perception (“detectables”
for forming beliefs conditional on current actions), and
m o v e m e n t or other physical changes within the
environment (e.g., flipping a switch). By enforcing the
semantics of language primitives such as
“communication,” the simulation can be converted more or
less directly into a distributed runtime system, in which
requests and information are transmitted by actual people
and devices, while involving software agents that were
previously incorporated in the simulation.

To summarize some of the overall advantages of the
architecture that we have drawn upon in creating the
runtime systems:

The language allows seamlessly modeling the
interactions of people, robots, devices (e.g., cameras),
documents (e.g., a written procedural checklist),
communication tools (e.g., a radio walkie-talkie), and
any arbitrary physical object (e.g., gloves).
All people and objects are always located in an
explicitly modeled geographic space, which provides
important conditions for physical activities (e.g.,
finding parts, being in close enough proximity to see
something, co-location of people leading to informal
assistance). . The ability to convert a simulation into an
implementation allows testing a system design in
simulated scenarios that model configurations of
people, machines, facilities, and geography to be tried
in field tests. . Multiple Brahms systems can communicate and
interact via proxy agents, allowing the runtime system
to be physically distributed on a wireless network.
Thus, existing software components written in other
programming languages, such as the Dialog system,
can interoperate within the Brahms language of agents,
beliefs, activities, and actions.
The layered communication architecture is robust and
flexible, allowing components to be added or removed
at runtime: MEX provides a wireless system for

--transmitting data;-CAoS provides a system for agents
to register their presence on the network and regulate
their interactions through policies. Brahms is used for
specifying how agents request or provide data in a
proactive, reactive, or responsive way. With
appropriate formalization of protocols (e.g., for
handling loss of communication), agents can
compensate for missing components or leverage the
presences of specialized services (e.g., a controllable
camera on the ERA).
Group inheritance of activities and beliefs allows
efficiently representing multiple instances of objects
and agents (e.g., multiple ATVs). The subsumption

.

=

-

architecture implemented by the Brahms engine
en&les srctivities to be simu!taceously “ruming” so
detectables and conditional actions can handle general
goals (survival) and specific tasks (e.g., getting
samples) in parallel, while shifting attention by
priority-based interruption (Le., conditional actions
called workframes have priorities).
Brahms’ well-developed Integrated Development
Environment, compiler, JAVA integration, and Agent
Viewer display provides an integrated toolkit for
writing, testing, fielding, and reusing a multiagent
system. Work in progress involves coupling Brahms to
a real-time virtual reality display implemented in
Adobe AtmosphereTM. ‘For example, this will enable
the habitat crew and RST to quickly visualize and
hence more easily monitor and control the
configuration of the EVA crew, ERA, and other tools.

Related Work
Different research surveys document a wide variety of
methods and issues in the development of multiagent
systems. Brahms in some respects is atypical, even within
this range of research over the past decade. Some of the
key differences between Brahms and most of the research
reported about multiagent systems are listed here.

Agents in our current scenarios are not conflicting or
competing. Rather the total system is designed for a
comprehensive, teamwork interaction that is mission
oriented, transcending individual goals. Just as NASA
trains flight controllers and astronauts to work
harmoniously, a field system incorporating Brahms
must have agents that are sensitive to and facilitating
the overall activity of the group (of people, robots, and
systems). In the Mars exploration environment there
will not be “other, un-modeled agents” (Jennings et al.
1998). A “market-based” architecture may be useful
for a fleet of robots working together, but the overall
system of people and machines must be highly
cooperative and coordinated, especially in emergency
situations.
The Brahms tool is designed to produce a runtime
system from a simulation. This is both a practical and
methodological stance. Developing a simulation is our
means of formalizing -- the requirements - of ~- the runtime
system. Thus, the description is dynamic, with
realizable properties discovered through scenario
testing, which drives the entire model-building activity
(a methodology we call “empirical requirements
analysis”, Clancey et al. 200 1).

The architecture shares the decompositional
advantages of object-oriented programming, but the
semantics of the agent-object distinction in Brahms
always leads us to reconsider the differences between
people and machines. Specifically, we are building
tools to help people deal with complex work
situations, many of which are caused by malfunctions
or unpredictable behaviors of computerized devices

=

-

‘Z

(e.g., the life support system). Our emphasis is on
providing tools for facilitating rather than rep!acir?g
human judgment (“human-centered computing”).
The explicit modeling of objects, environment, and
perception (as detectables) enables including a flexible
number of sensors or other instruments in the fielded
system.
The implementation platform enables constructing a
multiagent system in which software agents are
running on moving, physical systems (e.g., ATVs,
astronaut backpacks), hence our interpretation of the
phrase “mobile agents.”
We view autonomy as a means by which a remote
group of people can delegate their monitoring and
actions, required because of the communication time-
delay and small size of the crew on Mars. For
example, a science team on Earth could upload agents
to run on the Mars surface, and these agents would
make suggestions to the crew or gather data
unobtrusively (taking photographs), just as the science
team would if they could be on Mars (this is
speculative, but surely a highly suitable application for
the MAA).
Our conception of multiagent interactions is that
requests are not denied (hence they are more like
object-oriented methods [Alonso 20021). However,
agents in different locations with different data may
need to exchange beliefs to negotiate a course of
action. Or for example, the return of a subsystem to
the network (e.g., the ERA) may require other agents
to shift from a compensation protocol, to allow more
capable agents to complete or redo a task (e.g., making
a measurement). The scenarios we have attempted
have not required us to confront these issues yet. As
we continue our empirical requirements analysis
approach of building incrementally and learning about
desirable functions in authentic work settings, we
expect that some of these complex, theoretical aspects
of multiagent interactions may become relevant in the
Mars exploration domain.

a

.

.

1

Acknowledgments

Funding for this work is provided in part by the
NASAIAmes Intelligent _Systems Program, Human-
Centered Computing area, managed by Mike Shafto. As
listed in the background section, NASA’s Mobile Agents
project involves a large team of researchers in several
institutions. The work reported here would not have been
possible without their ideas and enthusiastic hard work in
building the devices and Brahms models we have
described. For publications and related information, see
http://bill.clancev.name & httu://www.agentisolutions.com.

References
Alonso, E. 2002. AI and agents: state of the art. A1

Magazine, 23(3) 25-29.
Bradshaw, J. M., Dutfield, S., Benoit, P., and Woolley, J.

D. 1997. “KAoS: Toward an industrial-strength generic
agent architecture.” Software Agents, J. M. Bradshaw,
ed., AAAI Press/The MIT Press, Cambridge, MA, 375-
418.

Burridge, R. R., and Graham, J. 2001. Providing robotic
assistance during extra-vehicular activity. Proceedings
of the SPIE - The International Society f o r Optical
Engineering, 4573: 22-33.

Clancey, W. J., Sachs, P., Sierhuis, M., and van Hoof, R.
1998. Brahms: Simulating practice for work systems
design. International Journal of Human-Computer
Studies, 49: 831-865.

Clancey, W. J., Lee, P., and Sierhuis, M. 2001. Empirical
requirements analysis for Mars surface operations
using the Flashline Mars Arctic Research Station.
FLAIRS Conference Proceedings, pp. 24-26.

Clancey, W. J. 2002. Simulating activities: Relating
motives, deliberation, and attentive coordination.
Cognitive Systems Research, 3(3) 471 -499. Special
issue on situated and embodied cognition.

Clancey, W. J. in press. Agent Interaction with Human
Systems in Complex Environments: Requirements for
Automating the Function of CapCom in Apollo 17.
AAAI Spring Symposium on Human Interaction with
Agent Systems in Complex Environments, March 2003.

E V A R o b o t i c A s s i s t a n t . U R L
http://vesuvius.isc.nasa.g.ov/er er/html/era/era.html

Jacobson, I. 1994. Object-Oriented Sof iare Engineering:
A Use Case Driven Approach. Addison-Wesley
Publishing Company, Reading, MA.

Jennings, N. R., Sycara, K., and Wooldridge, M. 1998. A
roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems, 1,7-38.

Martin D., Cheyer A. and Moran D. 1999. The Open Agent
Architecture: A framework for building distributed
software systems. Applied Artificial Intelligence, 13(1-
2), January-March.

Shillcutt, K., Burridge, R., Graham, J. 2002. Boudreaux the
Robot (a.k.a. EVA Robotic Assistant). Papersfiom the
AAAI Fall Symposium on Human-Robot Interaction,
-Tech Rpt FS-02-03. Falmouth, MA. pp. 92-96.

Sierhuis, M. 200 1. Modeling and simulating workpractice.
Ph.D. thesis, Social Science and Informatics (SWI),
University of Amsterdam, SIKS Dissertation Series NO.
200 1 - 10, Amsterdam, The Netherlands, ISBN 90-6464-

Vulkan, N. 2002. Strategic design of mobile agents. A I
849-2.

Magazine, 23(3) 101-106.

